
 
 

 
 
 

 

USB Communication Interface 
 (v. 03, 05-2019) 
 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 

 

 
 
 
 
 

Laserpoint srl – Via Burona, 51 – 20090 Vimodrone (Milano) – Italy 

Phone +39 02 27 400 236 – Telefax +39 02 25 029 161 
www.laserpoint.eu 

 
 

 
 

http://www.laserpoint.eu/


  Pag. 2 / 15 

 
Table of Contents 

 
Table of Contents .......................................................................................................................... 2 

1 - Installation ................................................................................................................................ 3 

2 - Input Commands and answer messages.............................................................................. 4 

2.1 Input Commands ................................................................................................................ 4 

2.2 Answer messages ................................................................................................................ 4 

2.3 Commands & Answers description Table....................................................................... 5 

2.4 Error Messages .................................................................................................................... 6 

3 Annex 1: FTD2XX.DLL Dynamic Library .............................................................................. 7 

D2XX Driver Architecture  ....................................................................................................... 7 

DLL Functions ........................................................................................................................... 8 

4  Examples and Notes ............................................................................................................... 14 

5 Useful links: .............................................................................................................................. 15 

 
 
 
 
  



  Pag. 3 / 15 

 
1 - Installation 

 
Connect the Plus 2 electronics through the USB port to the host PC device by a USB cable A to B 

type. 

Include in your Code the FTD2XX.DLL Dynamic Library for Windows (described in Annex 1) in order 

to write your application. 

  



  Pag. 4 / 15 

 
2 - Input Commands and answer messages 

 

When the Plus 2 receives a valid input command, it confirms to the host device that the command 

has been received and it returns the answer as follows. 

 
2.1 Input Commands 

 

The format of a valid command is as follow: 

*COMMANDNAME_NUMERICALVALUE: 

where: 

“*” :  Start of command 

“:” :  End of command 

“_” :  space character 

COMMANDNAME : the instruction as described in the following table; it is an ASCII character 

sequence. The command name must be in capitals. 

 
 

2.2 Answer messages 
 

Plus 2 device sends a message through USB interface only if it receives an Input Command from 

the Host Device.  

Maximum response time from Plus 2 is ~50msec.  Set a  delay of 50ms between write and read 

function to wait for device reply. 

 

The format of an answer is as follow: 

ANSWER ; 

where: 

“;” :  End of answer 

ANSWER : there are three kind of answer 

String: ASCII character sequence 

Int: integer number, numerical sequence (in ASCII code) 

Float: floating point number, numerical sequence plus decimal point (in ASCII code); ex. the 

NumericValue 23.45 is codified with the 5 ASCII characters “23.45”. 

  



  Pag. 5 / 15 

 
2.3 Commands & Answers description Table 

Command 
Name 

Description Answer 

HEADN Displays the Head model “H” + String 8 char 

SERNU Displays the Head serial number  “S” + Int 6 digit 

WSENS Displays Head sensitivity (mV/W) “W” + Float 3int.5dec  
PNOMW Displays maximum power value the Head can 

withstand (W) (or maximum Energy value (J)) 
“R” + Float 5int.1dec 

LAMBDA Displays the selected Wavelength (nm). 
This is the wavelength currently selected on 
the Plus 2 screen.  

“LAMBDA” + Int 5 digit  
 
Note: when an older (pre-2014) or custom sensor 
head is connected to the Plus 2, the answers  to 
LAMBDA command is a 3 character String:  
CO2, ERB, YAG, LAD, VIS or EXC 

POWER Set Plus 2 in Power Meter mode (if 

available) 
“ok” 

FIT Set Plus 2 in “FIT” operation mode (if 
available)   

“ok” 

ENERGY Set Plus 2 in Energy Meter mode (if 
available)   

“ok” 

ZERO Zeroing Plus 2 “ok” 

OUTPM Displays measured power (W)  
(or measured energy (J) if Energy mode is 

selected) 

-/+ Float, up to 9 digit 

TERMI Thermistor availability: (1) yes, (2) no “T” + Int 1 digit  

TEMP Displays Head temperature x 10 (°C) “t” + Int 3 digit 

STATUS Displays the status byte: 
Bit 0: Head connected: (1) yes, (0) no 
Bit 1: thermistor connected: (1) yes, (0) no 
Bit 2: not used 

Bit 3: cool warning (1)  
Bit 4: battery: connected to AC (1)  
Bit 5: battery: charge in progress (1) 
Bit 6: overload warning (1)  
Bit 7: overflow warning (1)  

Bit 8: status “ready”, for Fit/Energy mode (1) 
Bit 9: status “triggered”, for Fit/Energy mode 
(1)  
Bit 10: status “wait”, for Fit modes (1) 

Bit 11: not used 
Bit 12: overflow ADC gain G=x1 (1) 
Bit 13: overflow ADC gain G=x10 (1) 
Bit 14: overflow ADC gain G=x100 (1) 
Bit 15: not used 

Int 5 digit,  
(to be converted in binary) 

SETX1 0 Set x1 electronic amplifier  gain “ok” 
SETX1 1 Set x10 electronic amplifier gain “ok” 

SETX1 2 Set x100 electronic amplifier gain “ok” 

SETX1 3 Set the automatic selection of the electronic 

amplifier gain 
“ok” 



  Pag. 6 / 15 

 

 

 

 

2.4 Error Messages 
 

the following error message may be sent by the Plus 2 if a communication error occurs: ??; 

where:  

?? :  USB communication error 

“;” :  End of answer 

 

An error message may be sent for the following error conditions: 

Input command not started with * character 

Input command does not correspond with the command list 

Input command not in capitals 

 

 

  

X1D Displays the selected electronic gain set up: 
0: x1 gain 
1: x10 gain 

2: x100 gain 
3: automatic gain, current x1 gain 
4: automatic gain, current x10 gain 
5: automatic gain, current x100 gain 

Int 1 digit, from 0 to 5 

FAST Enables the acceleration algorithm  “FAST” 

SLOW Disables the acceleration algorithm,  

DO NOT use this command while in FIT or 
ENERGY mode.   

“SLOW” 

FASTSLOW Returns the Fast/Slow current setting  “FAST” or “SLOW” 



  Pag. 7 / 15 

 
3 Annex 1: FTD2XX.DLL Dynamic Library 

 

The FTD2XX.DLL Dynamic Library for Windows allows you to write your application. 
The architecture of the FTD2XX.DLL drivers consists of a Windows WDM driver that communicates 
with the device via the Windows USB Stack and a DLL which interfaces the Application Software 
(written in VC++, C++ Builder, Delphi, VB etc.) to the WDM driver.  
The FTD2XX.DLL interface provides a simple, easy to use, set of functions to access Plus 2 

control card. 
 

 

D2XX Driver Architecture 
 
 

 
 
 
 
 

  

  Plus 2  Control Card 



  Pag. 8 / 15 

 
DLL Functions 

 
A complete list and detailed description of  FTDXXX functions is available as “D2XX Programmer's Guide” in 
this section of  FTDI website:  
 

 
FT_ListDevices 
 

Description Gets information concerning the devices currently connected. This 

function can return such information as the number of  devices connected,  
and device strings such as serial number and product description. 
 

Syntax FT_STATUS FT_ListDevices (PVOID pvArg1, PVOID pvArg2, DWORD dwFlags) 
 
Parameters 

pvArg1 meaning depend on the dwFlags value (see note below) 
pvArg2 meaning depend on the dwFlags value (see note below) 
dwFlags Determines format of  returned information (see note below) 

 
Return Value FT_OK if  successful, otherwise the return value is an FT error code 
 

Note Remarks This function can be used in a number of  ways to return dif ferent types  
of  information. 
In its simplest form, it can be used to return the number of  devices currently  

connected. If  FT_LIST_NUMBER_ONLY bit is set in dwFlags, the parameter 
pvArg1 is interpreted as a pointer to a DWORD location to store the number of  
devices currently connected. 

It can be used to return device string information. If  
FT_OPEN_BY_SERIAL_NUMBER bit is set in dwFlags, the serial number 
string will be returned f rom this function. If  FT_OPEN_BY_DESCRIPTION bit 

is set in dwFlags, the product description string will be returned f rom this 
function. If  neither of  these bits is set, the serial number string will be returned  
by default. It can be used to return device string information for a single device.  

If  FT_LIST_BY_INDEX bit is set in dwFlags, the parameter pvArg1 is 
interpreted as the index of  the device, and the parameter pvArg2 is interpreted 
as a pointer to a buf fer to contain the appropriate string. Indexes are zerobased,  

and the error code FT_DEVICE_NOT_FOUND is returned for an invalid 
index. 
It can be used to return device string information for all connected devices. If  

FT_LIST_ALL bit is set in dwFlags, the parameter pvArg1 is interpreted as a 
pointer to an array of  pointers to buf fers to contain the appropriate strings, and  
the parameter pvArg2 is interpreted as a pointer to a DWORD location to store 

the number of  devices currently connected. Note that, for pvArg1, the last 
entry in the array of  pointers to buf fers should be a NULL pointer so the array 
will contain one more location than the number of  devices connected. 

 
FT_Open 
 

Description Opens the device and return a handle which will be used for subsequent  

accesses. 
 
Syntax FT_STATUS FT_Open (int iDevice, FT_HANDLE *ftHandle) 

 
Parameters 
iDevice indicates the number of  the device to be opened. Must be 0 

if  only one device is attached. For multiple devices 1, 2 etc. 
ftHandle Pointer to a variable of  type FT_HANDLE where the handle 
will be stored. This handle must be used to access the 

device. 
 



  Pag. 9 / 15 

 
Return Value FT_OK if  successful, otherwise the return value is an FT error code 
 

Note Although this function can be used to open multiple devices by setting iDevice to  
0, 1, 2 etc. there is no ability to open a specif ic device. To open named devices,  
use the function FT_OpenEx. With the FT_OpenEx function (not described in 

this user manual) it is possible to open a device also trough its serial number or 
trough its description. For further information, please contact LASERPOINT.srl. 

 

FT_Close 
 

Description Closes the communication with a open device. 

 
Syntax FT_STATUS FT_Close (FT_HANDLE ftHandle) 
 

Parametres 
ftHandle pointer to the communication handle of  the device to close. 
 

Return Value FT_OK if  successful, otherwise the return value is an FT error code 
 

FT_Read 
 

Description Reads a string f rom the device. 
 
Syntax FT_STATUS FT_Read (FT_HANDLE ftHandle, LPVOID lpBuffer, DWORD 

dwBytesToRead, LPDWORD lpdwBytesReturned) 
 
Parameters 

ftHandle pointer to the communication handle of  the device to read. 
lpBuffer pointer to the buf fer that receives the data f rom the device. 
DwBytesToRead Number of  bytes to be read f rom the device. 

lpdwBytesReturned Pointer to a variable of  type DWORD which receives the 
number of  bytes read f rom the device. 

 
Return Value FT_OK if  successful, FT_IO_ERROR otherwise. 
 

Note FT_Read always returns the number of  bytes read in lpdwBytesReturned. 
This function does not return until dwBytesToRead have been read into the 
buf fer. The number of  bytes in the receive queue can be determined by calling  

FT_GetStatus or FT_GetQueueStatus, and passed to FT_Read as 
dwBytesToRead so that the function reads the device and returns 
immediately. When a read timeout value has been specif ied in a previous call to  

FT_SetTimeouts, FT_Read returns when the timer expires or 
dwBytesToRead have been read, whichever occurs f irst. If  the timeout 
occurred, FT_Read reads available data into the buf fer and returns FT_OK. An 

application should use the function return value and lpdwBytesReturned when 
processing the buf fer. If  the return value is FT_OK, and lpdwBytesReturned 
is equal to dwBytesToRead then FT_Read has completed normally. If  the 

return value is FT_OK, and lpdwBytesReturned is less then dwBytesToRead 
then a timeout has occurred, and the read has been partially completed. Note 
that if  a timeout occurred and no data was read, the return value is still FT_OK. 

A return value of  FT_IO_ERROR suggests an error in the parameters of  the 
function, or a fatal error like USB disconnect has occurred.  

 

FT_Write 
 
Description Writes a string to the device. 
 

Syntax FT_STATUS FT_Write (FT_HANDLE ftHandle, LPVOID lpBuffer, DWORD 
dwBytesToWrite, LPDWORD lpdwBytesWritten) 
 



  Pag. 10 / 15 

 
Parameters 
ftHandle pointer to the communication handle of  the device to write. 

lpBuffer pointer to the buf fer which contains the bytes to be written in the 
device. 
DwBytesToWrite number of  bytes to write to the device. 

lpdwBytesWritten pointer to a variable of  type DWORD which receives the number of  
bytes written to the device 
 

Return Value FT_OK if  successful, otherwise the return value is an FT error code.  
 

FT_ResetDevice 
 

Description Sends a Reset command to the device. 
 
Syntax FT_STATUS FT_ResetDevice (FT_HANDLE ftHandle) 

 
Parameters 
ftHandle pointer to the communication handle of  the device to reset . 

 
Return Value FT_OK if  successful, otherwise the return value is an FT error code.  

 

FT_SetBaudRate 
 

Description Sets the baudrate for the device. 

 
Syntax FT_STATUS FT_SetBaudRate (FT_HANDLE ftHandle, DWORD 
dwBaudRate) 

 
Parameters 
FtHandle pointer to the communication handle of  the device to set out. 

dwBaudRate value of  the baudrate to set out. 
 
Return Value FT_OK if  successful, otherwise the return value is an FT error code.  

 

Note: Plus 2 Baud Rate value is 38400. 

 
 

FT_SetDataCharacteristics 
 
Description Sets the data characteristics for the device. 

 
Syntax FT_STATUS FT_SetDataCharacteristics (FT_HANDLE ftHandle, UCHAR 
uWordLength, UCHAR uStopBits, UCHAR uParity) 

 
Parameters 
ftHandle pointer to the communication handle of  the device to set out . 

uWordLength number of  bits per word. It must set as FT_BITS_8 (in the case of  8 bit 
schosen) or as FT_BITS_7 (in the case of  7 bits chosen). 
uStopBits number of  stop bits. It must set as FT_STOP_BITS_1 (when one stop bit 

is requested) or as FT_STOP_BITS_2 (when two stop bits are requested). 
uParity number of  parity bits. It must set as FT_PARITY_NONE (no parity bit) or 
as FT_PARITY_ODD (parity bit is odd) or as FT_PARITY_EVEN (parity bit 

is even) or as FT_PARITY_MARK (always high parity bit) or as 
FT_PARITY_SPACE (always low parity bit). 
 

Return Value FT_OK if  successful, otherwise the return value is an FT error code.  
 

Note: for Plus 2 the DataCharacteristics must be set as FT_DATA_BITS_8, FT_STOP_BITS_1, 

FT_PARITY_NONE  
 



  Pag. 11 / 15 

 
 

FT_SetFlowControl 
 

Description Sets the f low control the chip serial communication of  chip USB/RS232.  
 
Syntax FT_STATUS FT_SetDataCharacteristics (FT_HANDLE ftHandle, 

USHORT usFlowControl, UCHAR uXon, UCHAR uXoff) 
 
Parameters 

FtHandle pointer to the communication handle of  the device to set out. 
usFlowControl set the kind of  f low control. It must be set as FT_FLOW_NONE (no f low 
control) or as FT_FLOW_RTS_CTS (hardware RTS/CTS f low control) or as 

FT_FLOW_DTR_DSR (hardware DTR/DSR f low control) or as 
FT_FLOW_XON_XOFF (software XON/XOFF f low control) 
uXon shows the character uses as Xon signal. It must be set only when the 

f low control is software XON/XOFF kind (otherwise, it must be set as 
zero). 
uXoff shows the character uses as Xof f signal. It must be set only when the 

f low control is software XON/XOFF kind (otherwise, it must be set as 
zero). 
 

Return Value FT_OK if  successful, otherwise the return value is an FT error code.  
 

Note: for Plus 2 the FlowControl must be set as FT_FLOW_NONE 

 
 

FT_SetDTR 
 

Description Sets the Data Terminal Ready (DTR) control signal. (Data Terminal 
Ready). 
 

Syntax FT_STATUS FT_SetDTR (FT_HANDLE ftHandle) 
 
Parameters 

ftHandle pointer to the communication handle of  the DTR device to set out. 
 
Return Value FT_OK if  successful, otherwise the return value is an FT error code.  

 

FT_ClrDTR 
 
Description This function clears the Data Terminal Ready (DTR) control signal (Data 

Terminal Ready). 
 
Syntax FT_STATUS FT_ClrDTR (FT_HANDLE ftHandle) 

 
Parameters 
ftHandle pointer to the communication handle of  the DTR device to set out. 

 
Return Value FT_OK if  successful, otherwise the return value is an FT error code.  

 

FT_SetRTS 
 

Description Sets the Request To Send (RTS) control signal. (Request To Send).  
 
Syntax FT_STATUS FT_SetDTR (FT_HANDLE ftHandle) 

 
Parameters 
ftHandle pointer to the communication handle of  the RTS device to set out. 

 
Return Value FT_OK if  successful, otherwise the return value is an FT error code. 

 



  Pag. 12 / 15 

 
FT_ClrRTS 

 
Description Clears the Request To Send (RTS) control signal (Request To Send). 

 
Syntax FT_STATUS FT_SetDTR (FT_HANDLE ftHandle) 
 

Parameters 
FtHandle pointer to the communication handle of  the RTS device to set out. 
 

Return Value FT_OK if  successful, otherwise the return value is an FT error code.  
 

FT_SetTimeouts 
 
Description Sets the read and write timeouts for the device. 

 
Syntax FT_STATUS FT_SetBaudRate (FT_HANDLE ftHandle, DWORD 
dwReadTimeout, DWORD dwWriteTimeout) 

 
Parameters 
FtHandle pointer to the communication handle of  the device to set out . 

dwReadTimeout value of  the Read timeout, in milliseconds, to set out.  
dwWriteTimeout value of  the Write timeout, in milliseconds, to set out. 
 

Return Value FT_OK if  successful, otherwise the return value is an FT error code.  
 

FT_GetQueueStatus 
 

Description Shows the number of  characters in the receive queue. 
 
Syntax FT_STATUS FT_GetQueueStatus (FT_HANDLE ftHandle, LPDWORD 

lpdwAmountInRxQueue) 
 
Parameters 

FtHandle pointer to the communication handle of  the device to set out . 
lpdwAmountInRxQueue Pointer to a variable of  type DWORD which receives the 
number of  characters in the receive queue. 

 
Return Value FT_OK if  successful, otherwise the return value is an FT error code.  

 

FT_GetStatus 
 

Description Shows the device status including number of  characters in the receive 
queue, number of  characters in the transmit queue, and the current event status. 
 

Syntax FT_STATUS FT_GetStatus (FT_HANDLE ftHandle, LPDWORD 
lpdwAmountInRxQueue , LPDWORD lpdwAmountInTxQueue, LPDWORD 
lpdwEventstatus) 

 
Parameters 
ftHandle pointer to the communication handle of  the device to set 

out . 
lpdwAmountInRxQueu Pointer to a variable of  type DWORD which receives the 
number of  characters in the receive queue. 

LpdwAmountInTxQueue Pointer to a variable of  type DWORD which receives the 
number of  characters in the transmit queue. 
lpdwEventstatus Pointer to a variable of  type DWORD which receives the 

current state of  the event status. 
 
Return Value FT_OK if successful, otherwise the return value is an FT error code.  

 



  Pag. 13 / 15 

 
 

Error codes 
 

FT_OK = 0 
FT_INVALID_HANDLE = 1 
FT_DEVICE_NOT_FOUND = 2 

FT_DEVICE_NOT_OPENED = 3 
FT_IO_ERROR = 4 
FT_INSUFFICIENT_RESOURCES = 5 

FT_INVALID_PARAMETER = 6 
FT_INVALID_BAUD_RATE = 7 
FT_DEVICE_NOT_OPENED_FOR_ERASE = 8 

FT_DEVICE_NOT_OPENED_FOR_WRITE = 9 
FT_FAILED_TO_WRITE_DEVICE = 10 
FT_EEPROM_READ_FAILED = 11 

FT_EEPROM_WRITE_FAILED = 12 
FT_EEPROM_ERASE_FAILED = 13 
FT_EEPROM_NOT_PRESENT = 14 

FT_EEPROM_NOT_PROGRAMMED = 15 
FT_INVALID_ARGS = 16 

 

 
 
 
 

  



  Pag. 14 / 15 

 
4  Examples and Notes 

 
 
EXAMPLE 1 

Here below are reported some examples of  the main steps necessary to start the communication  

with a Plus 2 device with FTDXXX functions. The programming language for this example is VB.NET. 
 
 
 

‘ Get the number of the connected FTDI devices: 
FT_Status = FT_GetNumberOfDevices(NumDevicesConnected, vbNullChar, FT_LIST_NUMBER_ONLY) 
 

 
Browse all the connected FTDI devices to find Laserpoint Plus 2 device 
 
‘ 1 Get the device description 
FT_Status = FT_GetDeviceString(i, Description, FT_LIST_BY_INDEX Or FT_OPEN_BY_DESCRIPTION) 
 
‘ 2 Shrink the description returned as 64 chars string to the correct number of chars.  
‘ Ex: "Plus2                  " --> "Plus2" 

Description = Microsoft.VisualBasic.Left(Description, InStr(1, Description, vbNullChar) - 1)        
 
NOTE: Description of Laserpoint Plus 2 device is “Plus2” 
 

 
Get the serial number of Laserpoint device using the description 
 
‘ Get serial number of device using index 
FT_Status = FT_GetDeviceString(i, Serial, FT_LIST_BY_INDEX Or FT_OPEN_BY_SERIAL_NUMBER) 
 
‘ Shrink the description from 64 chars to the correct number of chars 
‘ Ex: "123456                 " --> "123456" 
Serial = Microsoft.VisualBasic.Left(Serial, InStr(1, Serial, vbNullChar) - 1)  
 

 
‘ Open communication with device identified by its serial number. Function will return a communication Handle which will 
‘ be used for all the following communications 
FT_Status = FT_OpenBySerialNumber(Serial, FT_OPEN_BY_SERIAL_NUMBER, COM_Handle) 
 

 
‘ Setting communication parameters    
FT_Status = FT_SetBaudRate(COM_Handle, 38400) 
FT_Status = FT_SetDataCharacteristics(COM_Handle, FT_DATA_BITS_8, FT_STOP_BITS_1, FT_PARITY_NONE) 
FT_Status = FT_SetFlowControl(COM_Handle, FT_FLOW_NONE, 0, 0) 
FT_Status = FT_SetTimeouts(COM_Handle, 500, 100) 
FT_Status = FT_Purge(COM_Handle, FT_PURGE_RX Or FT_PURGE_TX) 
  

 
‘ Read and write to serial port 
FT_Status = FT_Write_String(COM_Handle, "*COMMAND:", 9, byteswritten) 
 
' Set a delay of 50ms between write and read function to wait for device to reply 
System.Threading.Thread.Sleep(50) 
 
' Read the response from the device 
FT_Status = FT_GetQueueStatus(COM_Handle, RXBytes) 
ReadString = Space(RXBytes) 
FT_Status = FT_Read_String(COM_Handle, ReadString, RXBytes, bytesread) 
         

 

 
  



  Pag. 15 / 15 

 
5 Useful links:  

 
For a complete list and description of  FTDXXX functions, please download the “FTD2XX Programmer's 
Guide” at this link: 

http://www.ftdichip.com/Support/Documents/ProgramGuides.htm 
 
To download the right libraries for your Operative System / architecture please check this section of  FTDI 
website: 

http://www.ftdichip.com/Drivers/D2XX.htm 
 
For sof tware examples with dif ferent programming  languages please check this section:  

http://www.ftdichip.com/Support/SoftwareExamples/CodeExamples.htm 
 
           

http://www.ftdichip.com/Support/Documents/ProgramGuides/D2XX_Programmer%27s_Guide%28FT_000071%29.pdf
http://www.ftdichip.com/Support/Documents/ProgramGuides/D2XX_Programmer%27s_Guide%28FT_000071%29.pdf
http://www.ftdichip.com/Drivers/D2XX.htm
http://www.ftdichip.com/Support/SoftwareExamples/CodeExamples.htm

